A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant Mechanisms

نویسندگان

  • Hai-Jun Su
  • Denis V. Dorozhkin
  • Judy M. Vance
چکیده

This paper presents a screw theory based approach for the analysis and synthesis of flexible joints using wire and sheet flexures. The focus is on designing flexure systems that have a simple geometry, i.e., a parallel constraint pattern. We provide a systematic formulation of the constraint-based approach, which has been mainly developed by precision engineering experts in designing precision machines. The two fundamental concepts in the constraint-based approach, constraint and freedom, can be represented mathematically by a wrench and a twist in screw theory. For example, an ideal wire flexure applies a translational constraint, which can be described by a wrench of pure force. As a result, the design rules of the constraint-based approach can be systematically formulated in the format of screws and screw systems. Two major problems in compliant mechanism design, constraint pattern analysis, and constraint pattern design are discussed with examples in details. Lastly, a case study is provided to demonstrate the application of this approach to the design of compliant prismatic joints. This innovative method paves the way for introducing computational techniques into the constraint-based approach for the synthesis and analysis of compliant mechanisms. Disciplines Mechanical Engineering Comments This article is from Journal of Mechanisms and Robotics (2009): 041009, doi:10.1115/1.3211024. Posted with permission. This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/me_pubs/27 Hai-Jun Su Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250 e-mail: [email protected] Denis V. Dorozhkin e-mail: [email protected] Judy M. Vance e-mail: [email protected] Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant Mechanisms This paper presents a screw theory based approach for the analysis and synthesis of flexible joints using wire and sheet flexures. The focus is on designing flexure systems that have a simple geometry, i.e., a parallel constraint pattern. We provide a systematic formulation of the constraint-based approach, which has been mainly developed by precision engineering experts in designing precision machines. The two fundamental concepts in the constraint-based approach, constraint and freedom, can be represented mathematically by a wrench and a twist in screw theory. For example, an ideal wire flexure applies a translational constraint, which can be described by a wrench of pure force. As a result, the design rules of the constraint-based approach can be systematically formulated in the format of screws and screw systems. Two major problems in compliant mechanism design, constraint pattern analysis, and constraint pattern design are discussed with examples in details. Lastly, a case study is provided to demonstrate the application of this approach to the design of compliant prismatic joints. This innovative method paves the way for introducing computational techniques into the constraint-based approach for the synthesis and analysis of compliant mechanisms. DOI: 10.1115/1.3211024

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Dynamic Modeling of Planar Parallel Micro-Positioning Platform Mechanism with Flexible Links Based on Euler Bernoulli Beam Theory

This paper presents the dynamic modeling and design of micro motion compliant parallel mechanism with flexible intermediate links and rigid moving platform. Modeling of mechanism is described with closed kinematic loops and the dynamic equations are derived using Lagrange multipliers and Kane’s methods. Euler-Bernoulli beam theory is considered for modeling the intermediate flexible link. Based...

متن کامل

Direct adaptive fuzzy control of flexible-joint robots including actuator dynamics using particle swarm optimization

In this paper a novel direct adaptive fuzzy system is proposed to control flexible-joints robot including actuator dynamics. The design includes two interior loops: the inner loop controls the motor position using proposed approach while the outer loop controls the joint angle of the robot using a PID control law. One novelty of this paper is the use of a PSO algorithm for optimizing the contro...

متن کامل

Linkage factors optimization of Multi-outputs of compliant mechanism using Response Surface

This paper presents a linkage factors synthesis and multi-level optimization technique for bi-stable compliant mechanism. The linkage synthesis problem is modeled as multiple level factors and responses optimization problem with constraints. The bi-stable compliant mechanism is modeled as a crank slider mechanism using pseudo-rigid-body model (PRBM). The model exerts the large deflection of fle...

متن کامل

Concept design of Vehicle Structure for the purpose of computing torsional and bending stiffness

Automotive design engineers face the challenging problem of developing products in highly competitive markets. In this regard, using conceptual models in the first step of automotive development seems so necessary. In this paper, to make a body in white conceptual model, an engineering approach is developed for the replacement of beam-like structures, joints, and panels in a vehicle model. The ...

متن کامل

QFT Control of a Two-Link Rigid-Flexible Manipulator

This paper evaluates a new and simple controller design method based on QFT (quantitative feedback theory) for a two-link manipulator whose first link is rigid and the second is flexible. A piezoelectric patch is attached to the surface of the flexible link for vibration suppression of it. This system is modeled as a nonlinear multi-input multi-output (MIMO) control systems whose inputs are two...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009